

CONTENTS

1	Company/Business Overview	. P02-04
2	Top Commitment	. P05-06
3	Green Concept	. P07
4	Environmental Management	. P08-12
5	Environmental Accounting	. P13-14
6	Environmentally Friendly Product Development	. P15-19
7	Efforts to Manage Chemical Substances	. P20-23
8	Efforts Towards an Environmentally Balanced Factory	. P24-28
9	Recycling Activities	. P29
0	Environmental Communication	. P30-32
1	Environmental Performance Data	. P33-37
	Conclusions	. P38

-

Company/Business Overview

[Company Name]	Calsonic Kansei Corporation
[Headquarters	1	2-1917 Nisshin-cho, Kita-ku, Saitama City, Saitama
[Established	1	August 1938
[Capital]	¥41.5 billion
[Cons	olidated Subsidiaries	s]	34
[Affiliates	Accounted for under Equity Metho	[bc	15
[Stoc	k Exchange Listings	s]	Tokyo Stock Exchange (1 st Section)
[Businesses]	Manufacture and sale of parts for automobiles and industrial vehicles

Ordinary profit

Total assets

Number of employees

Scope of this Report

Organization

Calsonic Kansei Corporation, and its domestic and overseas affiliated companies

Period

Data in this report refer to fiscal 2012 (from April 2012 to March 2013), although some activities from fiscal 2013 are also covered.

■Data

Data are based on the companies (wholly-owned and consolidated subsidiaries) included in the Calsonic Kansei Group's Environmental Management System.

[Guidelines Referred to]

Environmental Reporting Guidelines (The Ministry of the Environment)

Environmental Accounting Guidelines (The Ministry of the Environment)

Calsonic Kansei Group Companies Subject to Consolidated Environmental Management

– Calsonic Kansei UK Limited – Calsonic Kansei Sunderland Limited Calsonic Kansei Korea Corp. – Daihan Calsonic Corp. –

Calsonic Kansei (Wuxi) Corp. Calsonic Kansei Components (Wuxi) Corp. Calsonic Kansei (Guangzhou) Corp. Calsonic Kansei (Guangzhou) Components Corp. Calsonic Kansei (Haimen) Car Air-Conditioning Compressor Corp.

Calsonic Kansei Spain, S.A.

Calsonic Kansei Romania S.R.L.

Calsonic Kansei (Thailand)
 Co.,Ltd.

Calsonic Kansei (Malaysia) Sdn. Bhd.

Calsonic Kansei Motherson Auto Products Limited

Major Products

Module Products

Designing a set of components or systems as a single unit or module can help reduce the number of parts and overall vehicle weight, and improve fuel efficiency. A good example of the benefits of this approach is increased cabin space created by modularizing the cockpit. Calsonic Kansei is a supplier that can provide modules on a global scale. We are striving to be recognized by automakers as their best partner by developing and manufacturing high-quality modules in cooperation with them.

Cockpit Module (CPM)

Front End Module (FEM)

System Products

Under the slogan of creating comfortable space that is friendly to both the earth and people, Calsonic Kansei designs and manufactures heaters, coolers, intake blowers and other components needed for air conditioning systems, as well as intake and exhaust systems. Our intake and exhaust systems meet contradictory requirements such as muffling performance, exhaust gas purification performance and engine power performance in a high-level and well-balanced manner.

1

<Japan>

Calsonic Kansei Corporation CKK Corporation CKF Corporation CKP Corporation Calsonic Kansei Utsunomiya Corporation Calsonic Kansei Iwate Corporation Tokyo Radiator Mfg. Co., Ltd. Calsonic Kansei Yamagata Corporation

Calsonic Kansei North America, Inc.

Calsonic Kansei Mexicana, S.A.de C.V.

Units and Component Products

Components are the basis of all Calsonic Kansei products. We have always taken on new challenges in technological development toward producing cutting-edge components. We have established a system that enables us to share technologies worldwide and to supply products of uniform quality around the world. We always try to anticipate changing market needs and provide innovative products that meet all the expectations and requirements of our customers.

2 TOP COMMITMENT

"As a global automotive company, we are inspired to be world-leading in innovation and Monozukuri while contributing to a sustainable society."

Hiroshi Moriya President and CEO

Akira Fujisaki Executive Vice President and Environmental Officer

With our mid-term business plan "CK GX4 T10", we will strive to develop world-leading environmental technologies/products.

In July 2011, Calsonic Kansei announced its medium-term business plan for fiscal years 2011 to 2016, called "CK GX4 T10" (CK G-by-four T-ten). Under the Plan, we aim to achieve our goals "T10" by implementing the four key initiatives of our growth strategy, namely, 4Gs-Green, Growth, Global and Great Company. In fiscal year 2013, the third year of the Plan, we will make every effort to achieve steady progress, following our roadmap.

■Green

We will develop innovative environmental technologies and products that lead the world. We aim to lead the industry in the development of next-generation environmentally-friendly products, by creating technological synergy with our total energy management technology at the core.

Growth

We aim to capture demand for compact cars and low-priced cars and expand our business in emerging countries by adopting innovative and aggressive marketing strategies, growth-oriented product and technology development strategies, and regional strategies tailored to each region.

Global

To achieve true globalization, we strive to develop individuals who can serve as global business leaders and create an organization and corporate culture rich in diversity, through global organizational management, standardization of work processes, and enhancement of manufacturing capabilities.

Great Company

To establish a solid foundation that enables us to become a Great Company, we will implement Green, Growth and Global initiatives in a comprehensive manner, thereby achieving the goals set in our medium-term business plan.

Achieve the goals of T10

- 1) Develop 10 new innovative eco-friendly products that lead the world.
- 2) Achieve global top 10 status in terms of sales.
- 3) Achieve global top 10 status in terms of operating profit.

Our corporate vision is "as a global automotive company, we will be inspired to be worldleading in innovation and Monozukuri, while contributing to a sustainable society". To become a truly global company that is trusted by all people around the world, we will strive to achieve our mid-term business plan and pursue concerted efforts as a comprehensive automotive parts manufacturer, to promote environmental protection in all aspects of our business activities, from development and design to manufacturing and logistics.

Environmental Protection Efforts

The Calsonic Kansei Group has been undertaking concerted efforts toward achieving the high level targets set out in its mediumterm environmental action plan, "Calsonic Kansei Group Green Program 2016 (CKGP2016)", established in fiscal 2011

2012 was the last year of the first commitment period of the Kyoto PROTOCOL (2008-2012). The Japanese government's target was to reduce the GHG emissions by 6% relative to the 1990 level. Our company greatly surpassed the goal by reducing the GHG emissions by 44.5% in 2012 and by 38.4% on average in the last five vears.

This is the result of vigorous implementation of our aggressive energy saving strategies including promotion of energy saving activities by all staff, investment in energy saving such as smart meters and LED lighting, energy saving diagnosis at the global level, and restructuring of domestic factories that have decreasing volume of production.

We are promoting environmental protection by striking a balance between environmental protection and financial performance, while at the same time encouraging every employee to become more environmentally conscious in their daily work.

Environmental Management

As part of efforts to reinforce our environmental management promotion structure, we established the Global Environment Management Meeting in fiscal 2011. In addition to the existing four committees (Product Environmental Committee, Production Engineering Environmental Committee, Environmental Energy Committee, and Environmental Communication Committee), four regional committees for North America, Europe, China and Japan were also established, to ensure that environmental policies and plans are shared and implemented among all Group companies around the world. Furthermore, to promote effective environmental management across the Group, we hold liaison meetings where environmental officers from all Group companies exchange information. In June 2012, the R&D Center of the Headquarters launched activities to obtain ISO 14001 certification, although it was not originally planned to be incorporated into the company's

Technology synergy

Leading the industry in developing next generation eco-friendly products by incorporating innovative features and cutting-edge technologies.

-

environmental management system. the Center has been working to develop an effective environmental management system that involves all employees since authentication and registration were completed in January this year.

Environmentally friendly product development

We will strive to develop innovative environmental technologies and products that lead the world by implementing Green initiatives identified in our new medium-term business plan. Our accomplishments so far include technology development and commercialization of injection scarfskin and EGR cooler.

Global Warming Prevention and CO₂ Emissions Reduction

We achieved a 38.4% reduction on average in the last 5 years in gross CO2 emissions from our domestic plants, against the target of "7% reduction on average in the period from 2008 to 2012, compared to fiscal 1990 levels," set by the Japan Auto Parts Industries Association.

This successful result was obtained thanks to Monotukuri Challenge Runner (MTCR) activities, as well as Group-wide energysaving activities such as energy-saving diagnosis and horizontal implementation of good practices, undertaken under the leadership of energy saving teams, which were formed by staff members in charge of energy saving from all plants to promote energy savina.

Zero Emissions

As a manufacturer that uses limited resources from the earth as raw materials to produce products, we are committed to the effective use of resources. As part of such efforts, we are implementing "zero emissions activities", activities to reduce final disposal of wastes as close to zero as possible, as part of our routine duties. We aim to achieve zero emissions at all group companies and plants throughout the world. Furthermore, in order to achieve zero emissions, this year, we set a new target completion date of Zero Landfill for our overseas locations to be 2015 and promote activities and strengthen our system to achieve "zero emission".

Social Contribution and Harmonious Coexistence with Local Communities

Calsonic Kansei is committed to contributing to building a better society. In line with this commitment, we strive not only to actively disclose environmental information, but also to closely communicate and engage with our stakeholders, thereby deepening mutual understanding and fostering relationships of trust.

We aim not just to contribute to local communities, but also to achieve harmonious coexistence with local communities through a wide range of activities including local environmental protection. Every Calsonic Kansei Group member is determined to be actively involved with efforts to address environmental problems facing the community, in cooperation with local residents.

To Everyone Reading this Report

We regard this Environmental Report as a major communication tool with our stakeholders and the public. However, with the aim of conserving resources, we have discontinued publishing the Environmental Report in printed form, and post information only on our website. We ask for your understanding.

To achieve sustainable corporate development while maintaining harmonious coexistence with society, we place great importance on listening to our customers' needs and comments and addressing issues requiring attention one by one with sincerity.

We hope that readers of this report will gain a better understanding of our environmental policy and activities. To better fulfill our responsibilities to protect the global environment as well as to deepen our communication with all stakeholders, we invite your candid comments and opinions about our activities, for which we thank you most sincerely in advance.

September 2013

06

3 Green Concept

As a corporate group specializing in the production of automotive components, the Calsonic Kansei Group vigorously promotes group-wide environmental protection activities.

Environmental Policy (established in April 1993)

The Calsonic Kansei Group Environmental Policy establishes a set of basic principles, in accordance with which all Group companies will promote environmental protection, a common challenge for all humankind.

To be trusted by all our stakeholders including customers and society at large, and to contribute to building a sustainable society, we strive to ensure that all Group companies throughout the world share the Policy and act in an environmentally responsible manner in accordance with it.

Environmental philosophy

With the aim of creating a pleasant natural environment and contributing to enriching society, Calsonic Kansei strives to protect the global environment by promoting intellectual innovation through technology integration, while at the same time encouraging its employees to always be aware of the basic principle of harmonious coexistence with nature.

Basic Environmental Policy

To contribute to building a more prosperous society, we strive to protect the environment at every stage of our business activities.

Environmental Policies

- ① Establish an organization that promotes environmental protection activities.
- ②Continuously improve and upgrade the environmental management system.
- ③ Comply with all applicable environmental laws and regulations.
- ④ Conduct environmental audits.
- © Promote resource-and energy-savings, waste reduction and recycling.
- 6 Reduce and eliminate the use of regulated hazardous substances.
- ⑦ Develop environmentally friendly products.
- 8 Streamline logistics activities.
- Implement environmental activities at our operations in Japan and overseas using the same standards in place at our domestic plants.
- ① Actively disclose environmental information.

Vision, Mission, Value

Vision, Mission, Value show the direction for us to become a Great Company through GX4 T10.

Corporate Vision (Significance of our existence)

As a global automotive company, we are inspired to be world-leading in innovation and Monotukuri, while contributing to a sustainable society.

Mission Statement (Our specific roles)

Global

We create the strongest world-wide automotive supplier brand by cohesively blending our diverse cultures into one dynamically agile team.

Inspired

We are persistent to invest in the CK core values generating pride, passion, and loyalty in all of our team members.

World Leading Innovation

We harness creativity and a Monotukuri spirit from our team members to be first-to-market with high quality products and processes for our customers.

Sustainable Society

We are committed to be a socially responsible corporate citizen that brings value to our shareholders, communities, and team members.

CK WAY (Action guidelines followed by every employee)

CK WAY is our Code of Conduct applies to all our employees to achieve our corporate vision, and is essential for us, CK Group, as a source of power for sustainable growth. All our employees are expected to follow it.

Environmental Management

With the aim of improving the global environment, Calsonic Kansei vigorously promotes environmental management throughout the Group worldwide, and encourages all Group employees to be more environmentally aware in the their daily operations.

1 Calsonic Kansei Group Environmental Management Promotion System

To further promote global environmental management, since fiscal 2011, we have been holding the Global Environment Management Meeting, replacing the former Environment Management Meeting.

Under the Global Environment Management Meeting, there are four committees. Each of the four committees develops an activity plan in its respective field, which is then presented to the Global Environment Management Meeting. The Meeting discusses and finalizes the Group's Action Plan based on the plans submitted by the committees. The Meeting also follows up the activities in the priority themes and ensures the effective implementation of the Action Plan. We have a system in place to ensure that all environmental management activities, from target setting to implementation, are executed, monitored and evaluated properly.

Organizational Structure and Roles of Each Committee

Δ

		Japan	North America	Europe	Asia
Environment Management Meeting	Product Environmental Committee	Promotes env including deve review of envir	ironmental conse elopment of envir onmental perform	ervation in product onmentally friendly ance indicators for	t development, y products and products.
Irperson:					
inager se Chairperson: obal Technology Division General anager use bairte	n: Division General Environmental Energy Committee		of environmental burdens ronmental laws and regula rces; promotes the reduct 14001 progress manager	s caused by manufacturing ations; promotes prevention ion and elimination of the us ient; conducts corporate env	operations; promotes of global warming and e of regulated hazard- ironmental audits, etc.
vironmental Energy Control Group					
	Production Engineering Environmental Committee	Promotes the redu motes compliance resource conserva lated hazardous so	uction of environmenta with environmental la ation measures; deve ubstances; and share	al burdens of production aws and regulations; pro- lops methods to reduc s environmentally friend	technologies; pro- protes energy and e the use of regu- ly technologies.
	Environmental Communication Committee	Promotes inter planning and in ⇒ Public relati and environme ⇒ Awareness	nal and external of nplementation of so ons activities for en ntal newsletters. -raising and inform up the intranet a	communication acti social contribution a xternal audiences, t mation-disseminatio	vities, including ctivities. through website

2 Calsonic Kansei Green Program 2016

As our medium-term plan for environmental conservation for fiscal years 2011 to 2016, we will vigorously implement the plan to achieve the following targets.

Calsonic Kansei	Calsonic Kansei Green Program (CKGP) 2016								
Itom	Target								
nem	Classification	Classification Region		rm	FY2012 Target	FY2012 Results	FY2013 Target	FY2016 Target	
CO ₂ Emissions Reduction	CO2 from	Japan	Upper row Lower row	Single year Mid-term	2% reduction vs FY2011 29.3% reduction vs FY2005	5% increase vs FY2011 28.5% reduction vs FY2005	2% reduction vs FY2012 30.7% reduction vs FY2005	34.7% reduction vs FY2005	
(Reduction of energy use)	production	N. America, Europe, Asia	Upper row Lower row	Single year Mid-term	2% reduction vs FY2011 4.7% reduction vs FY2005	2.9% reduction vs FY2011 10.4% reduction vs FY2005	2% reduction vs FY2012 6.0% reduction vs FY2005	9.7% reduction vs FY2005	
•Reduction of CO ₂ emissions per unit for production/logistics (emission per sales)	CO ₂ from logis- tics	Japan	Upper row Lower row	Single year Mid-term	1% reduction vs FY2011 18% reduction vs FY2010	15.1% reduction vs FY2011 23.2% reduction vs FY2010	1% reduction vs FY2012 19% reduction vs FY2010	22% reduction vs FY2010	
•Reduction of CO ₂ emissions per unit from offices (emission per office floor space)	CO ₂ from offices	Japan	Upper row Lower row	Single year Mid-term	1% reduction vs FY2011 2% reduction vs FY2010	0.4% reduction vs FY2011 1.09% reduction vs FY2010	1% reduction vs FY2012 3% reduction vs FY2010	6% reduction vs FY2010	
Resource Recycling	Waste	Japan	Upper row Lower row	Single year Mid-term	2% reduction vs FY2011 20% reduction vs FY2005	0.3% increase vs FY2011 26.3% reduction vs FY2005	2% reduction vs FY2012 22% reduction vs FY2005	28% reduction vs FY2005	
 Reduction of CO₂ emissions per unit (emission per sales) 	resources)	N. America, Europe, Asia	Upper row Lower row	Single year Mid-term	1% reduction vs FY2011 2% reduction vs FY2010	6.2% increase vs FY2011 2.1% increase vs FY2010	1% reduction vs FY2012 3% reduction vs FY2010	6% reduction vs FY2010	
Conservation of Water,	Water use	Japan	Upper row Lower row	Single year Mid-term	1% reduction vs FY2011 17.1% reduction vs FY2009	15.1% increase vs FY2011 17.5% reduction vs FY2009	1% reduction vs FY2012 18.2% reduction vs FY2009	21.4% reduction vs FY2009	
Air, Soil & Biodiver- sity • Reduction of water use (water use per sales)	PRTR	Japan	Upper row Lower row	Single year Mid-term	1% reduction vs FY2011 2% reduction vs FY2010	5.1% reduction vs FY2011 19.7% reduction vs FY2010	1% reduction vs FY2012 3% reduction vs FY2010	6% reduction vs FY2010	
Zero Landfill •Reduction of landfill rate (landfill per waste amount)	Landfill waste	N. America, Europe, Asia	Mid-	term	-	84.2%	50%	0% (Achieving 0 in FY2015)	

3 Environmental Action Plan (Fiscal 2012 Targets and Results)

To strengthen group-wide environmental efforts, the Calsonic Kansei Group holds the Global Environment Management Meeting and Environmental Energy Committee Meeting twice a year to exchange information on the implementation status of the Action Plan and achievements.

Priority issue	Mid-term Action Plan					
	Promote acquisition and maintenance of ISO 14001 certification for all Group plants and companies in Japan and overseas.					
	Strengthen group-wide global environmental management promotion system.					
	Enhancement of	Purification and prevention of contamination of soil and groundwater				
Environmental Manage- ment Promotion	management	Strict control of wastewater quality				
	Community partnership activities	Disseminate information on environmental activities undertaken by a production de- partment to earn local communities' trust. Maintain fulfillment rate at 100%.				
	Green partnership activities	Promote three Environmental Clean Chain Activities (CO ₂ emissions reduction, effec- tive use of resources, and reduction of substances causing environmental burdens) and prevent occurrence of environmental accidents at a production department. Enhance green partnership activities in collaboration with cooperating companies. Maintain fulfillment rate at 100%.				
	CO ₂ emissions reduction	Reduction of carbon dioxide (CO ₂) emissions (Japan Auto Parts Industries As- sociation [JAPIA] Voluntary Environmental Action Plan) Japan: Reduce CO ₂ emissions by 7% and CO ₂ emissions per unit by avg. of 20% from 2008 to 2012 (vs FY1990)				
Reduction of environmental	use)	• Reduction of carbon dioxide (CO2) emissions (CKGP2016) Reduce CO2 emissions per unit (total emissions/sales) by the percentages listed be- low, by FY2016, vs FY2005 Japan: 34.7% reduction North America, Europe & Asia: 9.7% reduction				
burdens of manufacturing activities	Resource recycling	Reduction of waste emissions (waste and valuable resources) (CKGP2016) Reduce waste emissions per unit (total amount of waste emitted/sales) by the percentages listed below, by FY2016 Japan: 28% reduction vs FY2005 North America, Europe & Asia: 6% reduction vs FY2010				
	Conservation of	Reduction of use of environmentally hazardous substances (CKGP2016) Japan: Reduce environmentally hazardous substance use per unit (total amount of PRTR substances used/sales) by 6% by FY2016 vs FY2010				
	air, soil & biodiversity	Reduction of water use (CKGP2016) Japan: Reduce waster use per unit (total amount of water used/sales) by 21.4% by FY2016 vs FY2009				
		Compliance with laws and regulations, as well as customer requirements, and reduc- tion and elimination of use of regulated chemical substances (European ELV Direc- tive: lead-based soldering in electrical applications, abolished at the end of December 2010) (Compliance with European REACH regulations)				
	Enhancement of efforts	Reduction of waste (development of easily recyclable products)				
Development of Environment- Conscious Products	to develop products that address environmental issues	Prevention of global warming (fuel efficiency/energy efficiency)				
		Prevention of air pollution (purification of exhaust gas)				
		Noise prevention (reduction of noise emissions)				
	Evaluation of environmentally friendly products					
Green Procurement	Expansion of green procu	urement				
Environmental Communication	Active disclosure of infor	mation on environmental activities				

2012 Plan	2012 Results	Page
	ICO Authentiaction and Desistration at DRD Conter/likedeuerters in January	l age
	2013 and Calsonic Kansei Yamagata Corporation in November 2012. Conducted CK environmental performance audits for all certified domestic sites.	12
Enhance CK Group Environmental Management Promotion System.	Strengthened Calsonic Kansei Environment Management Meeting. Improved emergency contact network in case of environmental acci- dents within Calsonic Kansei Group (Horizontal deployment rate: 100%)	8
Continue and expand soil and groundwater conservation efforts.	Took remedial measures for soil or groundwater contamination that had occurred, as well as preventive measures to prevent future occur- rence of soil/groundwater contamination.	23
Manage wastewater quality and exhaust gas emitted from our plants, by setting voluntary targets at 80% of regulation values.	Achieved our voluntary target values.	22
Fulfillment rate of community partnership activities (actual as- sessment points/standard assessment points): 100%	Achieved community partnership fulfillment rate of 100%. Conducted environmental risk communication by community mem- bers, company and government. Conducted cleaning of areas around business sites. Accepted visitors for plant tours and internship of students from local elementary, junior and senior high schools.	30-32
Fulfillment rate of green partnership activities (actual assessment points/standard assessment points): 100%	Achieved green partnership fulfillment rate of 100%. Conducted emergency response training for cooperating companies. Implemented training sessions on prevention of environmental acci- dents.	
Japan: Reduce CO2 emissions by 7% from FY 1990 level on average in 2012. (Calsonic Kansei + CKK + CKF)	CO ₂ emissions: 44.5% reduction CO ₂ emissions per unit: 56.9% reduction The target of the first commitment period of the Kyoto Protocol (2008- 2012) is CO ₂ emission reduction by 6% from 1990. As compared with this target, we achieved 44.5% reduction in FY 2012 and 38.4% on average of the last 5 years.	
Reduction of CO2 emissions per unit Japan: 2% reduction vs FY2011 (29.3% reduction vs FY2005) North America, Europe & Asia: 2% reduction vs FY2011 (4.7% reduction vs FY2005)	Japan: 5% increase vs FY2011 (28.5% reduction vs FY2005) North America, Europe & Asia: 2.9% reduction vs FY2011 (10.4% re- duction vs FY2005)	24-28
Reduction of waste emissions per unit Japan: 2% reduction vs FY2011 (20% reduction vs FY2005) North America, Europe & Asia: 1% reduction vs FY2011	Japan: 0.3% increase vs FY2011 (26.3% reduction vs FY2005) North America, Europe & Asia: 6.2% increase vs FY2010	
Japan: 1% reduction of environmentally hazardous substance use per unit vs FY2011	Japan: 5.1% reduction vs FY2011 (19.7% reduction vs FY2010)	22
Japan: 1% reduction of water use per unit vs FY2011 (17.1% reduction vs FY2009)	Japan: 15.1% increase vs FY2011 (17.5% reduction vs FY2009)	28
Reduce VOCs in vehicle cabin interiors. Promote the use of lead-free solder. Ensure compliance with European REACH Regulations.	Continued efforts to reduce VOCs in vehicle cabin interiors. Used lead-free solder for some models. Implemented activities to comply with European REACH Regulations.	20-21
Disclose materials data to customers promptly.	Responded effectively to customer instructions (via IMDS).	
Promote the development of easily recyclable products.	Cockpit front-end modules, Seamless hard instrument panels, Paint- less instrument	
Promote light-weight, fuel efficient/energy efficient products.	Injection scarfskin, EGR cooler. Cockpit front-end modules, Small, high performance air-conditioning systems, Variable capacity com- pressors for air-conditioners, Steering members, Printed circuit board harnesses, Built-in oil coolers, EV inverters, EV battery controllers, Lightweight radiators, Charge air coolers, Brash-less motors.	15 19
Promote development of products that ensure effective purifica- tion of exhaust gas.	New-structure metal supports Urea aqueous tank, DPF	13-13
Promote development of products with low noise emissions	Low noise exhaust system	
Promote the development of environmentally friendly products. Promote the creation of a database for relevant indicators.	Disseminated information on indicators for environmentally friendly products to employees, and started using the indicators. Promoted the development of a system for calculating CO ₂ emissions in the production stage.	
Enhance Green Procurement Guidelines.	Promoted activities to encourage business partners to agree to and follow our Green Purchase Guidelines.	23
Enhance Environmental Report.	Disseminated information on Calsonic Kansei's environmental activities and achievements widely to the public, through Environmental Report.	
Enhance information dissemination activities for external audi- ences.	Improved the "Environmental Information" section on our website. Communicated our environmental activities to our shareholders through Medium-Term Reports.	30-32

4 Business Activities and Environmental Burden \Rightarrow Mass Balance

No mark: Calsonic Kansei + domestic and overseas affiliated companies
+: Calsonic Kansei + domestic affiliated companies

Establishing an ISO 14001 Environmental Management System

Promoting the Acquisition of ISO 14001 Certification

- Since 1998 the Calsonic Kansei Group has been promoting the acquisition of ISO 14001, an international standard for environmental management systems. All Calsonic Kansei plants, the Testing Research Center, and domestic and overseas affiliated production companies (except those newly established) have been certified. The Group is promoting high standards of environmental management on a global scale.
- The Research and Development Center of the headquarters launched activities to obtain ISO 14001 certification in June 2012. The acquisition of certification and registration were completed in January 2013. We are currently establishing the environmental management systems for all of our group companies and all our employees.

Acquisition Status of Calsonic Kansei Facilities			Acqui	Acquisition Status of Major Overseas Affiliated Companies				
	Plant	Month/Year first certified		Company	Month/Year first certified			
	Gunma Plant	October 1998		Calsonic Kansei North America, Inc., Shelbyville Plant	September 2001			
	Kodama Plant	January 1999	North	Calsonic Kansei North America, Inc., Lewisburg Plant	September 2002			
Japan	Oppama Plant	February 1999	America	Calsonic Kansei Mexicana S.A. de C.V., Aguascalientes Plant	March 2005			
	Yoshimi Plant	December 2001		Calsonic Kansei Mexicana S.A. de C.V., San Francisco Plant	March 2005			
	Testing Research Center	January 2003		Calsonic Kansei Sunderland Limited	September 1999			
	R&D Center, Headquarters	January 2013		Calsonic Kansei UK Limited, Washington Plant	October 1999			
		Europe	Calsonic Kansei UK Limited, Llanelli Plant	January 2002				
				Calsonic Kansei Spain, S.A.	February 2000			
				Calsonic Kansei Romania S.R.L.	November 2008			
Acquisi	tion Status of Major Domestic A	Affiliated Companies		Daihan Calsonic Corp.	April 2004			
	Company	Month/Year first certified		Calsonic Kansei Korea Corp.	October 2004			
	Calsonic Kansei Iwate Corporation	June 1998		Calsonic Kansei Malaysia Sdn. Bhd.	August 2007			
	CKK Corporation	March 1999		Calsonic Kansei (Wuxi) Corp.	August 2007			
lanan	Calsonic Kansei Utsunomiya Corporation	May 1999	Asia	Calsonic Kansei (Wuxi) Components Corp.	November 2008			
Japan	CKF Corporation	December 1999		Calsonic Kansei (Guangzhou) Components Corp.	January 2009			
	Tokyo Radiator Mtg. Co., Ltd.	March 2003		Calsonic Kansei (Haimen) Corp.	Under consideration			
	CKP Corporation	March 2004		Calsonic Kansei (Thailand) Co., Ltd.	August 2011			
	Calsonic Kansei Yamagata Corporation	Isonic Kansei Yamagata Corporation November 2012		Calsonic Kansei Motherson Auto Products Limited.	Under consideration			

R&D Center, Headquarters, External review

Calsonic Kansei Yamagata Corporation, External review

Continuous Improvement of Environmental Management System (EMS)

As part of our efforts to continuously improve our environmental management system, we are working to increase the number of internal auditors at each business site. We also conduct internal and external environmental audits on a regular basis; internal audits are carried out under the leadership of the Environmental Energy Control Group of the Headquarters, and external audits are conducted by external agencies.

The Calsonic Kansei Group has introduced environmental accounting as a tool for quantitative evaluation of environmental activities and official announcements.

Environmental accounting is a means of publicizing and quantitatively summing up the economic advantages accompanying environmental conservation measures, as well as the benefits and costs of environmental conservation and related activities, and what we publicize in the environmental report fulfills our commitment to explain our business activities to our various stakeholders.

Establishing a quantitative evaluation summary is helpful for enhancing our sustainable business management practices.

Those benefits are summed up quantitatively, and announced to society in the form of environmental accounting through environmental reports. Evaluation of quantitatively calculated results can also assist our environmental management practices.

1 Goals of Environmental Accounting for the Calsonic Kansei Group

By actively disclosing quantitative measurement results to local citizens, stockholders, and society in general

stockholders, and society in general, we aim to boost the transparency of the environmental activities of our company and help all parties gain an understanding of our corporate stance on the environment. We use the quantification of both costs and amounts that arise from corporate involvement in environmental activities as a means of making further decisions pertaining to the effective promotion of future environmental activities.

In order to improve the consciousness of our employees, we established a system that raises environmental awareness, focuses on this awareness, and develops it further through everyday workplace interaction.

2 Status of FY 2012

Environment Conservation Costs

Environmental conservation costs are the investment and expenditures related to our environmental activities measured in monetary units.

							(011	t. willion yen)
E	nvironmental Cons	ervation Costs						
		li	nvestment	s	Expenditures			
		Classification	FY 2011	FY 2012	Rise and fall	FY 2011	FY 2012	Rise and fall
1.	1.Costs within each business area for reduction of the environmental burden			129	△38	628	820	192
	Pollution prevention costs	Prevention of air, water, soil and noise pollution.	86	23	△63	241	208	△33
	Environmental conservation costs	Energy savings, resource savings, costs of phasing out materials with high environmental burdens	81	76	riangle 5	57	77	20
	Resource recycling costs	Costs for reduction of industrial waste, recycling, and disposal	0	30	30	330	246	△84
2.	Upstream/downstream costs	Costs for controlling environmental burdens occurring upstream/ downstream of our business areas.	0	0	0	127	129	2
3.Management activity costs		Human resource costs incurred for environmental policy organizations, and the es- tablishment, operation and certification of environmental management structures.	0	4	4	159	133	△26
4.Environmental research and development cost		Costs for development of environmentally friendly products, and re- search and development related to reducing environmental burdens.	310	364	54	3,758	3,828	70
5.Social activities costs		Costs for supporting environmental conservation activities con- ducted by local citizens and groups.	0	0	0	2	6	4
6.Environmental damage treatment cost		Costs for restoration of the natural environment and compensa- tion for environmental damage.	0	0	0	34	15	△19
		477	497	20	4,708	4,931	223	

Environmental Conservation Effects

Environmental conservation effects are assessed both from the economic aspect, which is evaluated based on the amount of money, and the quantitative aspect, which is evaluated based on the reduction in substances causing environmental burdens.

Evaluation of Quantitative Effects of Environmental Conservation Policies				
	Classification	FY2011	FY2012	Effect
1.Environmental conservation eff				
	Total energy use after conversion to CO ₂ (t)	202,511	199,402	3,109
	Water consumption (km ³)	1,250	1,272	△22
2.Environmental conservation effects related to waste discharged in business operations (quantity)				
	Total amount of waste (t)	34,373	31,236	3,137
	Amount recycled (t)	31,820	29,362	2,458
	Amount disposed (landfilled) (t)	2,553	1,873	680
	PRTR substances (quantity, discharged) (t)	118	110	8

Economic effects of Environmental Conservation Policies

The economic effects are reported as the sum of the cutbacks in expenditures related to environmental activities (substantial results from energy saving activities etc.) and the income related to environmentally friendly activities (income from selling valuable resources etc.)

			(Unit: Million yen)
Classification	FY2011	FY2012	Effect
3.Economic effects of environmental conservation policies	13,359	11,817	△1,542
Reduced costs through energy saving	140	139	riangle 1
Reduced costs related to water use	3	3	0
Income from selling valuable resources	1,016	966	riangle 50
Proceeds from selling environmentally friendly products	12,200	10,709	△1,491

Basic Items

1.Target Period:FY 2011 (April 2011 to March 2012) FY 2012 (April 2012 to March 2013)

2.Scope of Statistics:

Calsonic Kansei Corporation	
Gunma Plant	
Oppama plant	
Yoshimi Plant	
Kodama plant	
Testing Research Center	
R&D Center/Headquarters	

Domestic affiliated companies CKK Corporation CKF Corporation CKP Corporation Calsonic Kansei Utsunomiya Corporation Calsonic Kansei Iwate Corporation Calsonic Kansei Yamagata Corporation Tokyo Radiator Mfg Co., Ltd.

Overseas affiliates

North	Calsonic Kansei North America Inc.
America	Calsonic Kansei Mexicana, S.A. de C.V.
Europe	Calsonic Kansei UK Limited
	Calsonic Kansei Sunderland Limited
	Calsonic Kansei Spain, S.A.
	Calsonic Kansei Romania S.R.L.
Asia	Daihan Calsonic Corp.
	Calsonic Kansei Korea Corp.
	Calsonic Kansei affiliates in China
	Calsonic Kansei Thailand Co., Ltd.
	Calsonic Kansei Malaysia Sdn. Bhd.
	Calsonic Kansei Motherson Auto Products Limited

5

Basically, we calculate costs in compliance with the guidelines issued by the Ministry of the Environment as a reference.

Environmentally Friendly Product Development

Calsonic Kansei set a "Green" target in its medium-term business plan announced in July 2011. This means that we aim to lead the industry by creating environmental technologies/ products of the next generation that can lead the world.

Calsonic Kansei is developing products that can reduce environmental impact throughout their entire life cycles with the concept: "We develop environmentally friendly products".

When developing environmentally friendly products, we adhere to the requirements of fuel/motive energy efficiency, compact/lightweight design, simplification of recycling processes, elimination/minimization of hazardous substances, etc. To adapt products to these requirements, it is necessary to consider these issues from the first stage of development.

We are promoting the development of products for electric cars, which are the most environmentally friendly motor vehicles on the market.

Calsonic Kansei is promoting the development of environmentally friendly products by assessing the environmental aspect, in addition to assessing quality, cost, delivery and patent issues.

Calsonic Kansei's Efforts and Products to Achieve its Environmental Targets

Environmental			Calsonic Kansei's Efforts t	to Achieve its Environmental Targets
ta	argets			Calsonic Kansei products etc.
	Reduction of waste	Reduction and elimination of c	ontrolled hazardous materials used in products	Products that do not use controlled hazardous substances (developing alternative materials)
Dev	hazardous materials	Development of easily recyclable	Disassembly-oriented	Cockpit modules, Front-end modules, Seamless hard instrument panels
elopn		products	Recycling	Integrated radiators and condensers, All-aluminum radiators, Uncoated instrument panels
nent S			Longer life	Stainless exhaust mufflers
Stage			Lightweight and compact design	Compact and high-performance air conditioning systems, Compact and lightweight aluminum internal oil coolers and exhaust manifolds, Lightweight steering members, Lightweight thin evaporators, Lightweight thin condensers, Lightweight radiators, PCB harnesses, Built-in oil coolers, Brushless motor, Main muffler
	Prevention of	Fuel cost savings and	Improvement in the efficiency of motive power engines	Inverter, Battery controller, EGR cooler
	giobai wanning	motive power savings	Reduction of the load on motive power engines through motive power savings in parts	High-efficiency car air conditioning systems (external control compressors, dual pipe systems)
			Improvement in the efficiency Improvement of of power transmissions automatic transmissions	Oil warm-up system
			Easing traffic congestion	Electronic toll collection on-board device
۲	Protection of the ozone layer	Reduction of HCFCs	Development of an air conditioning system using a new coolant	Air conditioning systems compatible with a new coolant
age s		l	Reduction of greenhouse gas emissions	Reduction in the amount of coolant used due to device improvements
stage			l l	Reduction in the amount of coolant leaked due to hose and joint improvements
	Air pollution prevention	Exhaust gas purification		Aqueous urea tank systems, ultra-thin metal substrates, EGR coolers, DPFs, Dual inside wall tube exhaust manifolds
	Noise prevention	Reduction of exhaust	noise	Low-noise exhaust systems, Sound radiation-reducing devices
	Coping with resource depletion	Development of new power resources	Fuel cell vehicles	Development of components (heat exchangers, etc.)
		Development of reso	urce saving products	Development of metal catalyst carriers with new mechanisms
	Reduction of waste	Recycling of	Rebuilding/reusing	Rebuilding and reusing air conditioning compressors
Disp		used cars	Material recycling	Recycling instrument panels and recovering precious metals from catalysts
osal			R&D for ASR reduction	
		Collection and destruction of CFCs		Coolant (CFC) recovery machine

6

Total Reduction of Environmental Burden by Modularization

Engine Exhaust Module

We are developing systems for the exhaust manifold, catalytic converter, center muffler, rear muffler, finisher, etc. which are highly suitable for exhaust gas purification.

6

Environmentally Friendly Product Development

3 Launching of Gx4 (Green) Environmental Products

In FY 2011 and 2012, we launched two types of environmental products.

Injection Scarfskin

- Great heat efficiency during manufacturing and low CO₂ emission (reduction by 58% compared with powder molding)
- Good material yield and low waste material (2.7 times more compared with vacuum molding)

(EGR: Exhaust Gas Recirculation)

- Heat exchanger that cools exhaust gas when it is returned to combustion chamber
- Reduce pump loss at the time of intake air and improve fuel efficiency

4 Prevention of Global Warming

We contribute to the improvement of the energy efficiency of vehicles by developing compact and lightweight fuel cost-saving/motive power-saving products. Our weight-saving efforts in particular can be seen in many of our products.

Promoting Compact and Lightweight Vehicle Parts

Development of Fuel Cost-/Motive Power-/Electric Power-Saving Products

■64 mm-thick Charge Air Cooler

The resistance of charge air was reduced by 30% (compared with our conventional products). The heat resistance was improved for fuel cost saving and to respond to regulations for exhaust gases from diesel cars.

6

Injection scarfskin instrument panel

Compressors for Car Air Conditioning

Calsonic Kansei contributes to the environment through fuel cost/motive power saving and reduction of CO₂ by offering variable capacity swash plate-type compressors which enable power saving due to continuous variability, as well as fixed capacity vane rotary compressors which realize compact and lightweight design due to their simple shape. In addition, we are promoting the development of compressors for EVs (electric vehicles).

Variable Capacity Compressor CSV617

Inverter and Battery Controller for EVs

The inverter features highly efficient control and quick response performance. The battery controller is a device that monitors and controls the state of lithium-ion batteries.

Development of Alternative Technology

Development of Alternative Refrigerant Air Conditioning Systems

Refrigerants currently used for car air conditioners have caused some concerns with regard to their impact on global warming. We are now developing air conditioning systems that use alternative refrigerants with a very low global warming coefficient.

5 Effective Use of the Earth's Resources

Calsonic Kansei strives to develop products with better disassemblability/recyclability by reducing the number of kinds of materials used, and those which need fewer new resources.

Uncoated Instrument Panel

6 Prevention of Air Pollution/Purification of Vehicle Exhaust Gases

Aqueous Urea Tank - Urea SCR System

The nitrogen oxide (NOx) present in exhaust gases is likely to be produced during complete combustion at high temperatures. By combining this NOx with aqueous urea it can be broken down into harmless water and nitrogen. The urea SCR system utilizes this mechanism to inject aqueous urea during catalysis, greatly reducing the amount of NOx produced. The aqueous urea tank is an important component that supports the urea SCR system.

As the tank is made from stainless steel, it has excellent rustproof properties and, along with the EGR cooler, intercooler and the aluminum fuel tank, this environmentally friendly product has been developed to meet the various needs of our customers.

This is the first time anywhere in the world that an aqueous urea tank has been mass-produced for vehicle installation and is highly durable and corrosion resistant.

7 Noise Prevention - Reducing Exhaust Noise in Exhaust Parts

By analyzing the silencing elements using elemental technology, and then combining the various elements, we are developing exhaust parts with high levels of silencing performance.

8 LCA Efforts (Product Environmental Impact Evaluation)

By quantitatively evaluating and understanding the environmental impact of products, Calsonic Kansei assesses the appropriateness of product plans, determines whether developmental plans are required or not, and sets priorities for environmentconscious matters during the product design, development and manufacturing processes, etc. and implement suitable environmental measures.

We have already calculated the internal environmental burden per unit for each of the products we make at our manufacturing plants, and we have entered this information into databases as LCA data for self-manufactured products.

LCA data are also calculated for selected target vehicle types. In 2006, we started seriously examining how to assess methods for evaluating the environmental aspect of products during the product development process and utilize the results. In 2007, we built a CO₂ emissions-computing system to calculate the CO₂ emission amounts generated during the manufacturing process for each of our products.

Efforts to Manage Chemical Substances

Substances that could impact the environment are used in some products, and for the manufacture of items designed to improve the quality of these products. Therefore, there are concerns that these substances could have a significant impact on the environment during the manufacture and use of these products and also when they are discarded.

Global awareness of the environment is now increasing and more requests to reduce/stop using these substances are coming in every year, both from home and abroad.

In response, we are promoting the responsible management of chemical substances (environmentally hazardous substances) by adhering to the laws and regulations of each country, responding promptly to our customers' requests, and setting our own goals voluntarily.

1 Basic Concepts

To achieve responsible risk management for "products", "manufacturing process", "purchased materials" and "processed materials", we adhere to the following fundamental principles: "Use as few harmful chemicals as possible", "eliminate as many harmful substances as possible and change to alternatives" and "properly manage harmful chemicals if they have to be used."

Environmentally Hazardous Substances in Products	 Reducing the amounts of environmentally hazardous substances used in products Immediate disclosure of the amounts of environmentally hazardous substances used in products
Environmentally Hazardous Substances	 Reducing emissions of environmentally hazardous substances used in the manufac-
Used in Manufacturing at Plants	turing process Properly managing used chemical substances
Environmentally Hazardous	Operations for Green procurement
Substances in	•Confirming the presence of chemical substances used in purchased items
Purchased Items	•Confirming the environmental management of our business partners

2 Environmentally Hazardous Substances in Products

Reducing the Amounts of Environmentally Hazardous Substances Used in Products

Calsonic Kansei doesn't just comply with the legal restrictions of each country. They also set their own goals, manage and use follow-up systems, promote the development of alternative technologies, and work towards reducing the amounts of environmentally hazardous substances used in their products.

Efforts by Calsonic Kansei to Comply with Regulations

	Calsonic Kansei's Efforts									
Regulations	Substances	Regulatory Schedule	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010	FY 2011	FY 2012	FY 2013
European	Four substances (lead, cadmium, mercury, hexavalent chromium)	Prohibited from July 2003	Compliant Except for sor	ce complete	d					
ELV Directive	Hexavalent chromium, corrosion coating	Prohibited from July 2007	Compliance completed							
Colf regulations	Reducing/abolishing the substances found in vehicl	The	adoption pr	ocess start	ed in the se	econd half o	of 2006.			
Sell-regulations	Applying a Pb-free so	Currently working towards adoption.								
European REACH SVHC*				★ Effe	ective June 1. ently under	rway.				

*SVHC stands for "Substance of Very High Concern" and is scheduled to include about 1,500 specific items, such as carcinogenic substances.

Efforts Directed Towards Reducing VOC Levels in Vehicle Interiors

Calsonic Kansei has set goals aimed at reducing and abolishing 13 volatile organic compounds (VOC) such as formaldehyde, toluene and xylene, which are included in the adhesives and coating materials used in car interior products and can cause irritation to the nose and throat. We have set a target for their elimination and a reduction in usage of related materials and coatings. We are now expanding the list of target materials used for these sorts of application.

	o ri	C
eч	G I I	

Using materials that do not contain formaldehyde
 Using adhesives that contain less toluene and xylene

Coatings

- ① Developing/using coatings that contain less toluene and xylene (TX-free coatings)
- ② Developing water-based coatings containing only a small amount of solvent

Immediate Disclosure of the Amount of Environmentally Hazardous Substances Used in Products

Almost all automobile makers now require suppliers, including Calsonic Kansei, to refrain from using prohibited substances and to report the materials and substances used in products through IMDS. To comply with this request, we have developed and formulated an IMDS entry support system called "GMDS" to promote the prompt disclosure of information to customers.

³ Environmental Efforts at Plants

Reducing Emissions of Volatile Organic Compounds (VOC) from Plants into the Air.

Domestic	We are conducting environmental compliance evaluations at each of our bases. In addition, in order to comply with the VOC emission regulations, we have installed thinner collection devices at plants that are subject to control. As a result, our plants continue to operate without violating any regulations.
Overseas	At each of our overseas bases, we are changing over to the use of low-toluene and low-xylene paints.

Support for PRTR Legislation (Calsonic Kansei + Domestic affiliated companies)

In order to confirm the amounts of PRTR-regulated substances discharged, moved and used, and to reduce the environmental burden, we are reducing the amounts of PRTR-regulated substances used by changing coating materials and setting the goal of a 6% reduction in emissions per unit by FY 2016, compared with FY 2010.

※ PRTR (Pollutant Release & Transfer Register),

(Act on the Confirmation, etc. of Release Amounts of Specific Chemical Substances in the Environment, published in 1999)

Amount Used (Calsonic Kansei + Domestic affiliated companies)

Amount Discharged/Moved (Calsonic Kansei + Domestic affiliated companies)

Amount Discharged/Moved in FY 2012 (Total: 110t)

Management of PCB

Appropriate management regulations have been implemented for electrical devices that include PCBs as waste products for special management in accordance with the law. PCBs are also scheduled for prompt disposal, which has already started at some bases.

Thorough Water Quality Management

We have set our voluntary management targets (80% of the regulatory value) and are conducting stricter management than the law requires.

Thorough Air Quality Management

We can reduce sulfur oxide (SOx) and CO₂ consumption by switching from Heavy Oil A fuel to Special Heavy Oil A fuel (containing only 10% of the sulfur content of Heavy Oil A) as well as converting natural gas and LPG for combustion and reducing the amount used by adopting energy-saving activities.

Environmental Contamination Accidents or Grievances

Rules for collecting data on overseas environmental accidents were established in FY 2011 in order to manage them as quickly as possible. Although one environmental accident with the potential to affect the environ-

ment at large occurred in FY 2012, our quick responses were able to minimize the damage.

After each accident, the situation was rapidly assessed and the causes were investigated in order to cope with the situation. (A report has already been submitted to the government.)

Base	Content
Calsonic Kansei (Thailand) Co., Ltd.	Exceeding the oil reference value in the waste water

Efforts to Clean up Soil Ground Water and Prevent Contamination

We are addressing the current situation by focusing efforts on plants which have already been contaminated, and we are implementing preventive measures and conducting thorough investigations.

1 Efforts for Advanced Prevention

- \cdot Switching from subterranean fuel management to above ground management \Rightarrow Completed.
- Converting from Special Heavy Oil A to Natural Gas and LPG (including CO2 reductions)

2 Thorough Surveying

We have already conducted investigations on the soil in each area, including affiliated companies. We are also conducting an investigation of affiliated company groups.

Efforts to Reduce the Amounts of Environmentally Hazardous Substances in Purchased Items

Promotion of Green Procurement

Calsonic Kansei procures various items such as raw materials, indirect materials and component parts and believes that managing all procured items is an important part of the responsible management of environmentally hazardous substances. We ask for our suppliers' cooperation in following the "Calsonic Kansei Green Procurement Guidelines" that were created in order to comply with the relevant laws and regulations and to accommodate customers' requests. This enables us to continue promoting Green Procurement with our suppliers in order to fulfill our social responsibilities.

Operation for Green Procurement

The "Calsonic Kansei Green Procurement Guidelines" set out legislation stipulating the substances that are to be managed, how to conduct survey reports on chemical substances included in items we have purchased, and evaluations of the environmental management system status of our suppliers.

1 Environmental Efforts for Purchased Items (Materials, Parts, Products, Indirect Materials and Packaging Materials)

- We conduct surveys of the substances included in purchased items (materials, parts, products and packaging materials).
- We confirm that any chemical substances included in purchased items (materials, parts, products and packaging materials) comply with the requirements by using IMDS, MSDS, etc.

2 Investigation for the Establishment of Environmental Management Systems

Accreditation for an environmental management system such as ISO 14001 has been acquired.

- ②Accreditation for an environmental management system such as ISO 14001 is being promoted, and a clear plan with a concrete schedule for acquisition has been established.
- ③Equivalent activities to either of the above are ongoing.

The Calsonic Kansei Group is quantitatively evaluating the environmental burden output resulting from its industrial operations, and striving to reduce this burden by gaining a comprehensive understanding of the impact of all operations.

2012 was the last year of the first commitment period of the Kyoto PROTOCOL (2008-2012). The Japanese government's target was to reduce the GHG emissions by 6% relative to the 1990 level. Our company greatly surpassed the goal by reducing the GHG emissions by 44.5% in 2012 and 38.4% on average in the last five years.

We promote reduced carbon emissions and reduced emissions per unit from the viewpoint of global warming and also promote 100% reuse of resources in order to create zero waste from the viewpoint of the effective use of resources, so that our factories can operate in balance with the environment.

Furthermore in 2012, same as 2011, our concerted efforts called "Energy Saving Special Activities" greatly surpassed the original targets and promoted our energy management.

Prevention of Global Warming

In FY 2012, we established the "Calsonic Kansei Green Program 2016" midterm environmental plan and we are now promoting various activities to reach the FY 2016 goal.

Transition of CO₂ Emissions from FY 1990 to FY 2012 (Calsonic Kansei + CKK + CKF)

1 CO2 Reduction Plan

We are targeting an average reduction of 7% in CO₂ emissions and 20% in CO₂ emissions per unit from 2008 to 2012 (Environmental Self-Action Plan of the Japan Auto Parts Industries Association), in comparison with FY 1990 levels.

2 CO₂ Reduction Achievements

CO2 emissions were reduced by 44.5% and CO2 emissions per unit were reduced by 56.9% in FY 2012, compared to FY 1990 levels.

CO₂ Emissions per Unit (t-CO₂/million yen) 0.229 0.0988 (0.33 was used as the CO₂ conversion factor for electricity in comparison with FY 1990)

	1990	2008	2009	2010	2011	2012	08-12 average	Comparison with 1990 FY 08-12 average	Comparison with 1990 FY 12 alone
CO ₂ Emissions; Fixed factor (t-CO ₂)	74,390	47,165	47,726	46,507	46,235	41,250	45,777	38.4% reduction	44.5% reduction
CO ₂ Emissions; Variation factor (t- CO ₂)	74,390	55,470	52,261	49,672	60,461	59,680	55,509	25.4% reduction	19.8% reduction
CO2 Emissions per Unit; Fixed factor (t- CO2/ million yen)	0.2286	0.1492	0.1215	0.1038	0.0959	0.0988	0.1138	50.2%reduction	56.9% reduction
CO2 Emissions per Unit; Variation factor (t- CO2/ million yen)	0.2286	0.1755	0.133	0.1109	0.1251	0.1428	0.1375	39.8% reduction	37.5% reduction
CO ₂ conversion factor for electricity (t·CO ₂ / Mwh) (basic unit of JAPIA)	0.330	0.400	0.370	0.372	0.460	0.517	-	-	-

56.9% Reduction

Overview of Activities until FY 2012 (Calsonic Kansei + Domestic Affiliated Companies)

We are aiming to reduce the amount of CO₂ emissions per unit by 34.7% by FY 2016, compared to FY 2005.

In order to achieve the goal described above, we targeted a 2% reduction in FY 2012, compared to FY 2011. As a result, a 5.0% increase in CO₂ emissions per unit and a 9.4% reduction in CO₂ emissions were achieved.

Management Item	FY 2005 (base	EV2011 Doculto	EV2012 Poculto	Achievement status				
Management item	year) Results	FT2011 Results	FT2012 Results	Compared with FY 2005	Compared with the Previous Year			
CO ₂ Emissions (t-CO ₂)	103,183	81,801	74,131	28.2%Reduction	9.4%Reduction			
CO ₂ Emissions per Unit (t-CO ₂ /million yen)	0.2173	0.1480	0.1554	28.5%Reduction	5.0%Increase			

(0.38 was used as the CO₂ conversion factor for electricity in comparison with FY 2005)

Overview and Discussion of Activities

- ①We carried out "Energy-Saving Special Activities" in which all of our bases participated. We also implemented energy-saving diagnosis and energy engineering study groups to extract and improve energy-saving projects. However, as a result of production volume reduction, the CO₂ emissions per unit increased.
- ②As a result of our "Energy-Saving Special Activities", our headquarters area received the highest award, representing Saitama prefecture, from the Kanto-District Rational Use of Power Committee (February 26, 2013).

Overview of Activities until FY 2012 (Overseas Affiliated Companies)

We are aiming to reduce CO₂ emissions per unit by 9.7% by FY 2016, compared to FY 2005.

In order to achieve the goal described above, we targeted a 2% reduction in FY 2012, compared to FY 2011. By promoting reduction activities, a 2.9% reduction in CO₂ emissions per unit was achieved.

Managament Itam	FY 2005 (base			Achievement status		
management ttem	year) Results	F 12011 Results	F 12012 Results	Compared with FY 2005	Compared with the Previous Year	
CO ₂ Emissions (t-CO ₂)	79,507	110,930	116,195	—	-	
CO2 Emissions per Unit (t-CO2/million yen)	0.2919	0.2693	0.2615	10.4%Reduction	2.9%Reduction	

(0.38 was used as the \mbox{CO}_2 conversion factor for electricity in comparison with FY 2005)

Activities and Discussion

Implementation of energy-saving diagnosis in overseas bases

In FY 2012, the Department of Environmental Energy Management in Japan and the personnel in charge of energy management at bases in Asia increased employees' understanding of energy saving and implemented diagnosis to evaluate and compare their respective situations.

The right-hand graph shows a result of less than 30 million ton-kilometer, which does not require notification, etc. However, we have drawn up a reduction plan for logistics and we are making efforts to achieve the set goal.

Activities and Discussion

- ①Minimization of transportation between domestic bases by promoting overseas procurement
- ⁽²⁾Promotion of transportation by train

③Promotion of sea transportation

2 Natural Resource Conservation Activities

To utilize the planet's limited resources efficiently, we are seeking to achieve zero emissions at all the global business bases of our group, to promote conservation activities, and to reduce the amounts of materials used and waste generated (waste and valuables).

Flowchart Illustrating Reuse Operations for Waste Discharged from Plants

•			•		
Categories Type		Methods for Handling/Disposal	Disposal Location	Methods for Effective Usage	Recycled Products
Oil waste (including benzene and waste LLC), Other oily water		Oily water separation	Cement manufacturers Calsonic Kansei (fuel)	Sales of resources (recycled heavy oil)	Fuels, cement, roadbed materials
High quality paper, newspaper, magazines		Sorting/dissolving	Paper manufacturers	Sales of resources	Toilet paper, etc.
Cardboard, confidential documents, paper cores		Sorting/dissolving	Paper manufacturers	Sales of resources	Recycled paper, cardboard medium, etc
Iron scraps and empty cans]	Sorting/dissolving	Metal refining manufacturers	Steel-making materials	Steel, non ferrous metals (copper, aluminum, stainless steel) materials
Oil waste (cooking oil waste)		Separation/recycling	Oleochemical manufacturers	Fuel for oleochemical manufacturers' company cars, feed	Biodiesel fuels, assorted feed
Fluorescent waste	\rightarrow	Separation/recycling Crushing/separation	Material manufacturers	Recycled materials for each element	Recycled materials (mercury, glass, metals)
Glass bottles	\rightarrow	Sorting/crushing	Glass manufacturers	Glass materials	Glass bottles
Waste plastic (soft)	\rightarrow	Crushing, volume reduction and solidification	Resin-recycling manufacturers	Boiler fuels	Solid fuels
Oil waste (oil-bearing waste cloth)	\rightarrow	Incineration	Waste heat boiler installation manufacturers	Utilization of waste heat (collecting steam)	Boiler fuels
Waste plastic		Crushing/separation	General recycling manufacturers	Sorting, steel-making materials, fuels	Ferrous materials, solid fuels, fuels
Metal scraps (including aluminum chips)	b 100				
Fluorescent waste (crushed pieces)	H				
Infectious waste	H	Incineration and	Shaft furnace	Shaft furnace-reducing	Steel-making materials,
Glass ceramic scraps	H	fusion	manufacturers	agents	(incineration residues)
Sludge	H I				
Oil waste (filter)	μ				
Sludge (flux, grinding residue)		Incineration	Shaft furnace manufacturers	Utilization of waste heat (furnace heat reserves) Shaft furnace-reducing agents	Roadbed materials (incineration residues)
Dehydrated sludge (filter press)		Classification	Shaft furnace manufacturers	Processing granular materials	Raw materials for cement
Wood scraps		Crushing	Waste wood-recycling manufacturers	Compressed graft cutting	Laminated wood (particle boards)
Wood clippings and grass		Crushing/fermentation	Compost manufacturers	Compost materials	Compost

Transition of Regional CO2 Emissions per Unit

2,500 2,269 2,219 2,121 Compared to FY 2011 2,000 1,500 0 2006 2007 2008 2009 2010 2011 2,121 1,949 15.1% reduction 1,654

> 8 Balano

Overview of Activities until FY 2012 (Calsonic Kansei + Domestic Affiliated Companies)

We are aiming to reduce the amount of waste discharge per unit by 28% by FY 2016, compared to FY 2005.

In order to achieve the goal described above, we targeted a 2% reduction in FY 2012, compared to FY 2011. Although we promoted reduction activities, waste discharge per unit increased by 0.3%.

Management Item	FY 2005 (base	EV2011 Deputto	EV2012 Deputto	Achievement status		
Management item	year) Results	FT2011 Results	FT2012 Results	Compared with FY 2005	Compared with the Previous Year	
Waste discharge (t)	17,433	14,892	12,911	-	-	
Waste Discharge per Unit (t/million yen)	0.0367	0.0270	0.0271	26.3%Reduction	0.3%Increase	

Waste discharge per unit=Total amount of waste discharge/Sale

Activities and Discussion

As a result of the following activities, we managed to reduce the waste discharge. However, as a result of production volume reduction, the waste discharge per unit increased.

(1) Horizontal development of resource-saving activities

2 Improvement of poorly performing processes is targeted by promoting MTCR activities in each plant.

Overview of Activities until FY 2012 (Overseas Affiliated Companies)

We are aiming to reduce the amount of waste discharge per unit by 6% by FY 2016, compared to FY 2010.

In order to achieve the goal described above, we targeted a 1% reduction in FY 2012, compared to FY 2011. Although we tried to reach this goal, the amount of waste discharge per unit increased by 6.2%.

Management Itom	FY 2010 (base	EV2011 Deputte	EV2012 Deputto	Achievement status		
Management item	year) Results	FT2011 Results	FT2012 Results	Compared with FY 2010	Compared with the Previous Year	
Waste discharge (t)	18,997	19,481	20,923	—	-	
Waste Discharge per Unit (t/million yen)	0.04923	0.04734	0.05029	2.1%Increase	6.2%Increase	

Regional Total for Generated Waste Amount in FY2012

Activities and Discussion

- · Although we extracted projects to reduce the amount of waste discharge and implemented the activities to improve the situation, the amount of waste increased because it was the projects' start-up period.
- In the overseas locations where "Zero Emission" activities lagged behind, we set FY2015 as the deadline to achieve Zero Landfill and promoted activities.
- · Calsonic Kansei North America, Lewisburg Plant, achieved the zero landfill, and they received an award from the State of Tennessee.

(Left) CKNA Lewisburg Plant achieved zero waste discharge (Right) Award from the State of Tennessee

Water Resources Used and Reduction Measures

Overview of Activities until FY 2012 (Calsonic Kansei + Domestic Affiliated Companies)

We are aiming to reduce the volume of water consumption per unit by 21.4% by FY 2016, compared to FY 2009.

In order to achieve the goal described above, we targeted a 1% reduction in FY 2012, compared to FY 2011. Although we promoted reduction activities, the volume of water consumption per unit increased by 15.1%.

Management Item FY 2009 (base year) Results FY201	FY 2009 (base			Achievement status	
	FT2011 Results	FT20T2 Results	Compared with FY 2009	Compared with the Previous Year	
Used water (km ³)	734	651	647	-	—
Water usage per unit (km ³ /million yen)	1.643	1.178	1.356	17.5%Reduction	15.1%Increase

Activities and Discussion

We managed reduced the water usage fee per unit by adopting the measures shown below. However, the water usage per unit increased due to reduction of manufacturing volume, changes in manufacturing process, etc. ①Checking for leaks ②Cyclic use of cooling water

Environmental Report 2013 28

9 Recycling Activities

Calsonic Kansei has been consistently involved in recycling activities as a voluntary initiative for environmental conservation - even though this may affect profits. We will continue to promote recycling activities to meet the needs of a sustainable society.

Calsonic Kansei is promoting in-house recycling activities as well as the recycling of waste generated from outsourced business activities.

2 Activities in FY 2012

Secondary aluminum alloy

We collect aluminum mill ends, etc., generated in the manufacturing process used to recycle secondary aluminum alloy, and then reuse them for our affiliated companies' aluminum products. This contributes to resource recycling.

2 Collecting and Recycling Precious Metals from Used Catalysts for Purifying Exhaust Gases

We effectively separate and collect "materials containing precious metals (wash coat) that can be used as a valuable resource" from catalysts for purifying automobile exhaust fumes, etc. by using environmentally friendly dry separation devices.

Used catalysts for purifying exhaust gases

Collected powder (containing precious metals)

Precious metal

Amount of collected and recycled aluminum	Amount of used catalysts collected for purifying exhaust gases
2,630t	13,052units
2,350t	18,422units
2,030t	21,075units
	Amount of collected and recycled aluminum 2,630t 2,350t 2,030t

9

Recycling Activities

10 Environmental Communication

Calsonic Kansei is ensuring that it not only discloses environment-related information to society but also communicates with every stakeholder supporting us in order to strengthen relationships and contribute to a trustworthy social framework.

Communication with Local Communities and Societies

By ensuring that all employees of the Calsonic Kansei Group commit themselves to solving environmental problems, we are helping to make a better environment, in cooperation with people in the local communities.

1 Environmental Communications with Local Communities

Calsonic Kansei Kodama Plant

In order to share accurate information concerning environmental risks among the relevant people including people who live near the Plant, our company and the local government organized environmental communication events to have mutual understanding and trust.

CKK Nakatsu Plant

We participated in the "Fureai Festival" in Imazu District of Nakatsu City and drew the attention of the participants to CKK's environment improvement activities. Calsonic Kansei North America (USA)

We participated in a cleaning activity with the local communities.

Plant Tours and Internship for Students in Local Communities (work experience)

Calsonic Kansei Gunma Plant

Internship for a junior level student from a high school for children with special needs.

Calsonic Kansei Yoshimi Plant

5th graders (80 children) from a local elementary school visited the plant. We introduced the summary of the company and energy-saving activities

Calsonic Kansei UK (UK)

Local students were invited to the company. We introduced the summary of the company and products.

3 World Environment Day

Calsonic Kansei Thailand

In 2012, trees were planted to increase green area.

Sapling for planting.

10

Support of Suppliers for Environmental Activities

Tokyo Radiator MFG Co., Ltd.

At the 2012 suppliers meeting on May 10 (Thu), we explained our FY2012 environment policy and asked for their continuous collaboration.

5 Cleaning Activities in Local Communities

CKP

Calsonic Kansei Oppama Plant

We conducted cleaning activities in the Hirakata bay and the area surrounding the plant.

Calsonic Kansei Oppama Plant Shonan Module

We conducted cleaning activities along the sidewalk and peripheral roads of the Nissan Shatai Co., Ltd. Hiratsuka District 2.

6 Volunteer Activities

Calsonic Kansei Iwate

We participated in the volunteer mowing activities in the area affected by the Great East Japan Earthquake.

We are regularly conducting cleaning activities in the industrial park.

Calconic Kansei Utsunomiya

At lunch break on the cleaning activity day, we conducted cleaning activities (i.e. picking up trash, pulling up weeds) in the area surrounding the company.

CKGH Calsonic Kansei Guangzhou (China)

We conducted cleaning activities in the Dongfeng Nissan production line and its surrounding area.

CKGC Calsonic Kansei Guangzhou Component (China)

We are conducting cleaning activities in the area surrounding the company.

10

Environmental Communication

Explanation provided to our Stockholder

We described our environmental efforts in our business report, actively publicizing our environmental conservation activities to our stockholders.

3 Community Partnership Activities & Green Partnership Activities

In FY 2008, Community Partnership Activities and Green Partnership Activities began as part of environmental efforts in the production departments, displaying a completion ratio (%) in order to evaluate each activity. Since we accomplished 100% of our completion ratio in FY 2010, we are now striving to maintain that status.

Community Partnership Activities

Community Partnership Activities are activities that promote our environmental efforts to the communities near our plants and to society in general.

Activities	Basic Evaluation Points
Supplying environmental information via our website	25 points
Explaining our environmental efforts to plant visitors	25 points
Explaining our environmental efforts at external lectures, etc.	25 points
Environment-related activities contributing to local communities	25 points
Total	100 points

Green Partnership Activities

Community Partnership Activities are activities that promote 3 Environmental Clean Chain Activities and environmental accident prevention in collaboration with cooperating companies.

Activities	Basic Evaluation Points
Conducting activities, targeting cooperating companies which enter the premises of our company.	20 points
Seeking cooperation for 3 Clean Chain Activities and environ- mental accident prevention activities	20 points
Standardizing the procedure for requesting cooperation and utiliz- ing it.	50 points
A system is in place to promote activities.	10 points
Total	100 points

3 E	Invironmental Clean Chain
No.1	CO2 Reduction through CO2 management
No.2	Effective use of resources in the production process
No.3	Reduction of emission of paint VOC, etc. through emission management

4 Communication with Society

We believe that it is essential for companies to disclose their corporate environmental activities and achievements in a timely manner. Therefore, we are publicizing our activities and achievements to the public and various groups by disclosing our environmental report on our website, explaining our activities through IR, etc.

The efforts made by the Calsonic Kansei Corporation are shown on the Website of Calsonic Kansei Corporation

URL http://www.calsonickansei.co.jp/

5 Communication with Employees

In-house Communication

We are providing environmental information in a timely manner through the Intranet and by educating our employees, as well as the employees of our affiliated companies.

Measures taken in Offices

We carry out "Cool-biz" and "Warm-biz" practice in order to reduce energy consumption and help prevent global warming.

11 Environmental Performance Data

Calsonic Kansei Corporation

Gunma Plant

Address : 132 Shin-Nakano, Ouracho, Oura-gun, Gunma A r e a : 224,781m² Buildings : 64,352m² Major Products:Air-conditioning units, condensers,exhaust products, metal supports

Ordinance and Agreement	Gunma Prefecture Ordi	nance, Oura Town Agr	eement, Sewage Law
Items Regarding Waste	Results		
Water Regulations	Regulation value	Minimum	Maximum
рН	6.5~8.5	7.1	7.9
SS	30mg/l and less	6.4	22.3
BOD	20mg/l and less	4.5	12.2
N-Hex	3mg/I and less	1.	8
F	8mg/l and less	0.6	1.0
Zn	2mg/l and less	0.1以下	0.3
Р	16mg/l and less	0.2	0.5
Ν	120mg/I and less	1.6	3.9
Cu	3mg/I and less	0.1 an	d less
Ni	-	_	-
Fe	5mg/l and less	0.1以下	0.6
COD		_	_
E. coli bacteria	3000 and less	33	210
Dichloromethane	0.2mg/l and less	0.02 ar	nd less
Total volume of water discharge			48.7(km³)
Drain field	Discharged into a riv	er (subsidiary stream	of the Tone River)
BOD average			8.3(mg/l)
Amount of pollution load (BOD)			0.4(t)
SOx			_
NOx			-
Soot Dust			-
CO ₂			16,003(t)

Oppama Plant

Address : 18 Natsushima-cho, Yokosuka City, Kanagawa A r e a : 22,514m² Buildings : 17,434m² Major Products:Exhaust products

Ordinance and Agreement	Kanagawa Prefectural Ordir	nance, Yokosuka Municipal	Ordinance, Sewage Law	
Items Regarding Waste	Regulation value		Results	
Water Regulations	Regulation value	Minimum	Maximum	
pН	5.8~8.6	7.3	7.8	
SS	300mg/I and less	1.0 and less	2.8	
BOD	300mg/I and less	1.0 and less	1.7	
N-Hex	5mg/l and less	0.5 an	d less	
F	-	_	_	
Zn	1.0mg/l and less	0.1 and less	0.6	
Р	6.25mg/I and less	0.1 and less	0.1	
N	50mg/l and less	2.1	4.5	
Cu	1.0mg/l and less	0.1 and less	0.5	
Ni	1.0mg/l and less	0.1 an	d less	
Fe	3mg/I and less	0.1	0.7	
COD	-	_	_	
E. coli bacteria		_	-	
Dichloromethane	-	-	-	
Total volume of water discharge			8.6(km³)	
Drain field			Sewage	
BOD average			1.1(mg/l)	
Amount of pollution load (BOD)			0.01(t)	
SOx			_	
NOx			0.162(t)	
Soot Dust			0.032(t)	
CO ₂			1,546(t)	

Calsonic Kansei Corporation

Yoshimi Plant

Address : 628 Ooaza-Kumeda, Yoshimimachi, Hiki-gun Saitama A r e a : 141,784m² Buildings : 49,700m² Major Products:Instrument panels, center consoles

Regulation value Water Regulations Regulation value Minimum Results pH 5.8~8.6 7.0 7.5 SS 90mg/I and less 2.0 11.6 BOD 25mg/I and less 2.0 11.6 BOD 25mg/I and less 0.5 and less 3.5 N-Hex 5mg/I and less 0.5 and less - F - - - - P 8mg/I and less 2.9 6.3 N 60mg/I and less 7.9 23.2 Cu - - - - Fe - - - - CD 60mg/I and less 6.6 13.6 Fe - - - - COD 60mg/I and less 0 1300 1300 Dichloromethane - - - - COD 05charged into a river (subsidiary stream of the Ichino River) 30.3 (km ³) Drain field	Ordinance and Agreement	Saitama Prefecture Ordi	inance	
Water Regulations Regulation Value Minimum Maximum pH 5.8~8.6 7.0 7.5 SS 90mg/I and less 2.0 11.6 BOD 25mg/I and less 2.0 11.6 BOD 25mg/I and less 0.5 and less 3.5 N-Hex 5mg/I and less 0.5 and less - F - - - - P 8mg/I and less 2.9 6.3 N 60mg/I and less 7.9 23.2 - - Cu - - - - - Fe - - - - - - Cu -	Items Regarding Waste	Results		
pH 5.8~8.6 7.0 7.5 SS 90mg/l and less 2.0 11.6 BOD 25mg/l and less 2.0 11.6 BOD 25mg/l and less 0.5 ard less 3.5 N-Hex 5mg/l and less 0.5 ard less 3.5 F — — — Zn — — — P 8mg/l and less 2.9 6.3 N 60mg/l and less 7.9 23.2 Cu — — — N 60mg/l and less 7.9 23.2 Cu — — — Fe — — — COD 60mg/l and less 6.6 13.6 E. coli bacteria 3000 and less 0 1300 Dichloromethane — — — Torain field Discharged into a river (subsidiary stream of the lchino River) 80.3 (km³) BOD average 2.2 (mg/l) 0.07 (t) SO×	Water Regulations	Regulation value	Minimum	Maximum
SS 90mg/l and less 2.0 11.6 BOD 25mg/l and less 1.0 and less 3.5 N-Hex 5mg/l and less 0.5 and less 3.5 F - - - Zn - - - - P 8mg/l and less 2.9 6.3 3.1 N 60mg/l and less 7.9 23.2 2.0 - </td <td>pН</td> <td>5.8~8.6</td> <td>7.0</td> <td>7.5</td>	pН	5.8~8.6	7.0	7.5
BOD 25mg/l and less 1.0 and less 3.5 N-Hex 5mg/l and less 0.5 and less - F — — — — Zn — — — — — P 8mg/l and less 2.9 6.3 N 60mg/l and less 7.9 23.2 Cu — — — — — — — N 60mg/l and less 7.9 23.2 Cu — — — — — — — — — — …	SS	90mg/I and less	2.0	11.6
N-Hex 5mg/l and less 0.5 and less F - - - Zn - - - - P 8mg/l and less 2.9 6.3 . N 60mg/l and less 7.9 23.2 Cu - - - Ni 60mg/l and less 7.9 23.2 Cu - - - Ni - - - Fe - - - COD 60mg/l and less 6.6 13.6 E. coli bacteria 3000 and less 0 1300 Dichloromethane - - - Tda wome divider distarge 30.3 (km³) 30.3 (km³) Drain field Discharged into a river (subsidiary stream of the lchino River) BOD average 2.2 (mg/l) No Sulfur content due to the use of city gas and LPG No No Sulfur content due to the use of city gas and LPG	BOD	25mg/l and less	1.0 and less	3.5
F - - - - Zn - 100 <t< td=""><td>N-Hex</td><td>5mg/l and less</td><td>0.5 an</td><td>d less</td></t<>	N-Hex	5mg/l and less	0.5 an	d less
Zn — — — — — — — — — — — — — — …	F	—	—	—
P 8mg/l and less 2.9 6.3 N 60mg/l and less 7.9 23.2 Cu — — — Ni — — — Fe — — — COD 60mg/l and less 6.6 13.6 E. coli bacteria 3000 and less 0 130 Dichloromethane — — — Tda volume divater discharge 30.3 (km ³) 30.3 (km ³) Drain field Discharged into a river (subsidiary stream of the Ichino River) 8OD average Amount of polition load (800) 0.07 (t) \$Ox	Zn	—	—	—
N 60mg/l and less 7.9 23.2 Cu - - - - Ni -	Р	8mg/I and less	2.9	6.3
Cu - - - Ni - - - Fe - - - COD 60mg/l and less 6.6 13.6 E. coli bacteria 3000 and less 0 1300 Dichloromethane - - - Tda viume of water disharge - - - Drain field Discharged into a river (subsidiary stream of the Ichino River) 30.3 (km³) BOD average - 2.2 (mg/l) - Mount of polition load (800) 0.07 (t) \$Ox No Sulfur content due to the use of city gas and LPG	N	60mg/I and less	7.9	23.2
Ni - - - Fe - - - - COD 60mg/l and less 6.6 13.6 E. coli bacteria 3000 and less 0 130 Dichloromethane - - - Tda work dvatege - - - BOD average - 2.2 (mg/l) - Amount of polution load (800) - 0.07 (t) SOx	Cu	_	-	_
Fe — — — COD 60mg/l and less 6.6 13.6 E. coli bacteria 3000 and less 0 130 Dichloromethane — — — Ida volume divered discharge 30.3 (km³) 30.3 (km³) Drain field Discharged into a river (subsidiary stream of the Ichino River) BOD average Amount of polution load (800) 0.07 (t) \$0.7 (t) SOx No Sulfur content due to the use of city gas and LPG	Ni	-	—	—
COD 60mg/l and less 6.6 13.6 E. coli bacteria 3000 and less 0 130 Dichloromethane — — — Ida volume of water discharge 30.3 (km³) 30.3 (km³) Drain field Discharged into a river (subsidiary stream of the Ichino River) 2.2 (mg/l) Amount of polution text (glob) 0.07 (t) 0.07 (t) SOx No Sulfur content due to the use of city gas and LPG	Fe	_	—	—
E. coli bacteria 3000 and less 0 130 Dichloromethane - - - Idal volume of water discharge 30.3 (km³) 30.3 (km³) Drain field Discharged into a river (subsidiary stream of the Ichino River) BOD average 2.2 (mg/l) mount of polition lead (B0D) 0.07 (t) SOx No Sulfur content due to the use of city gas and LPG	COD	60mg/I and less	6.6	13.6
Dichloromethane — — — — — — — — — — — — Image: Constraint of the constrain	E. coli bacteria	3000 and less	0	130
Idal volume of water discharge 30.3 (km³) Drain field Discharged into a river (subsidiary stream of the Ichino River) BOD average 2.2 (mg/l) Amount of polition toat (BOD) 0.07 (t) SOx No Sulfur content due to the use of city gas and LPG	Dichloromethane	-	—	—
Drain field Discharged into a river (subsidiary stream of the Ichino River) BOD average 2.2 (mg/l) Amount of pollution load (800) 0.07 (t) SOx No Sulfur content due to the use of city gas and LPG	Total volume of water discharge			30.3(km ³)
BOD average 2.2 (mg/l) Amount of polition load (800) 0.07 (t) SOx No Sulfur content due to the use of city gas and LPG	Drain field	Discharged into a rive	er (subsidiary stream o	of the Ichino River)
Amount of pollution load (800) 0.07(t) SOx No Sulfur content due to the use of city gas and LPG	BOD average			2.2(mg/l)
SOx No Sulfur content due to the use of city gas and LPG	Amount of pollution load (BOD)			0.07(t)
NO 440(4)	SOx	No Sulfur content	due to the use of c	ity gas and LPG
NU _X 1.18(t)	NOx			1.18(t)
Soot Dust 0.011(t)	Soot Dust			0.011(t)
CO ₂ 5,040(t)	CO ₂			5,040(t)

Kodama Plant

Address : 540-7 kyoei, Kodamacho, Honjo City, Saitama A r e a : 51,168m² Buildings : 15,838m² Major Products:Electronic control units

Ordinance and Agreement	Saitama Prefecture Ord	linance	
Items Regarding Waste	Results		
Water Regulations	Regulation value	Minimum	Maximum
pН	5.8~8.6	7.0	7.9
SS	60mg/l and less	5.0	19.0
BOD	25mg/l and less	2.0	9.0
N-Hex	30mg/l and less	3.0 an	d less
F	-	-	
Zn	_	_	-
Р		-	-
N	-	_	-
Cu		-	-
Ni	_	_	-
Fe		-	
COD	160mg/I and less	3.0	11.0
E. coli bacteria	3000 and less	30 an	d less
Dichloromethane	_	-	
Total volume of water discharge			10.4(km ³)
Drain field	Discharged into a ri	ver (subsidiary stream	of the Tone River)
BOD average			4.4 (mg/l)
Amount of pollution load (BOD)			0.05(t)
SOx			0.062(t)
NOx			0.671(t)
Soot Dust			0.006(t)
CO ₂			3,135(t)

Testing Research Center Address : 8 Sakae-cho, Sano City, Tochigi

A r e a: 73,829m² Buildings: 47,141m²

Ordinance and Agreement	Tochigi Prefectural Ordin	ance, Sano Municipal Or	dinance, Sewage Law
Items Regarding Waste	Results		
Water Regulations	Regulation value	Minimum	Maximum
pН	5.0~9.0	6.8	8.4
SS	600mg/I and less	1.0 and less	169.0
BOD	600mg/I and less	1.0 and less	148.0
N-Hex	5mg/l and less	1.0 an	d less
F	-	—	_
Zn	-	-	-
Р	-	-	-
N	-	—	-
Cu		—	_
Ni	-	—	-
Fe	-	-	-
COD	-	—	-
E. coli bacteria	-	-	-
Dichloromethane	_	-	-
Total volume of water discharge			56.1 (km ³)
Drain field		Sewa	ge, Misugi River
BOD average			27.2(mg/l)
Amount of pollution load (BOD)			1.53(t)
SOx			-
NOx			-
Soot Dust			-
CO ₂			6,921(t)

R&D Center and Headquarters

Address : 2-1917 Nisshin-cho, Kita-ku, Saitama City, Saitama A r e a: 33,047m² Buildings: 10,704m²

Ordinance and Agreement	Saitama Prefectural Ordina	ance, Saitama Municipal O	Ordinance, Sewage Law
Items Regarding Waste	Pogulation value	Results	
Water Regulations	Regulation value	Minimum	Maximum
pН	5.0~9.0	7.0	7.5
SS	600mg/I and less	159.0	278.0
BOD	600mg/I and less	54.6	256.0
N-Hex	30mg/I and less	_	-
F		-	_
Zn	-	_	-
Р	32mg/I and less	3.0	5.3
N	240mg/I and less	9.7	19.9
Cu		-	_
Ni	-	_	-
Fe		-	_
COD		_	-
E. coli bacteria		-	-
Dichloromethane	-	-	—
Total volume of water discharge			27.2(km³)
Drain field			Sewage
BOD average			143.5(mg/l)
Amount of pollution load (BOD)			3.9(t)
SOx			0.000(t)
NOx			0.141(t)
Soot Dust			0.000(t)
CO ₂			2,154(t)

Domestic Affiliated Companies

CKK (Headquarters and Usa Plant) Address : 111 Ooaza-Waki, Usa City, Ooita A r e a:99,146m² Buildings: 19,427m² Major Products:Instrument panels

Ordinance and Agreement	Ooita Prefectural Ordinance, Usa Municipal Agreement		
Items Regarding Waste	Results		
Water Regulations	Regulation value	Minimum	Maximum
pH	6.0~8.6	7.3	8.0
SS	60mg/l and less	2.0	18.0
BOD	60mg/l and less	1.0 and less	1.0
N-Hex	2mg/I and less	1.0 an	d less
F	-	-	_
Zn	-	-	-
Р	-	-	-
N	-	_	—
Cu	-	-	-
Ni	-	-	-
Fe	-	-	-
COD	60mg/l and less	3.0	7.0
E. coli bacteria	-	-	-
Dichloromethane	-	-	-
Total volume of water discharge			7.2(km³)
Drain field	Dis	scharged into a rive	r (Yorimo River)
BOD average			1 (mg/l)
Amount of pollution load (BOD)			0.007(t)
SOx			0.246(t)
NOx			0.642(t)
Soot Dust			0.025(t)
CO ₂			6,566(t)

CKK (Nakatsu Plant)

Address : 150-3 Ooaza-Inumaru, Nakatsu City, Ooita A r e a:48,646m² Buildings: 17,803m² Major Products:Air-conditioning units, radiators, exhaust products

Ordinance and Agreement	Ooita Prefectural Ordinance, Nakatsu Municipal Agreement		
Items Regarding Waste	Regulation value	Res	ults
Water Regulations	Regulation value	Minimum	Maximum
pН	6.0~8.5	6.3	7.5
SS	30mg/l and less	1.0 and less	14.0
BOD	30mg/l and less	0.7	11.0
N-Hex	5mg/l and less	0.5 and less	0.67
F		_	-
Zn		_	_
Р	8mg/l and less	0.42	5.5
Ν	60mg/l and less	2.8	28.0
Cu		_	-
Ni		_	_
Fe		_	-
COD	_	_	-
E. coli bacteria	3000 and less	0	5.0
Dichloromethane		_	-
Total volume of water discharge	(Living	g water-purification	tanks) 8.6(km ³)
Drain field	Disc	charged into a river	(Inumaru River)
BOD average			4.4 (mg/l)
Amount of pollution load (BOD)			0.04(t)
SOx			0.116(t)
NOx			0.245(t)
Soot Dust			0.018(t)
CO ₂			8,799(t)

Domestic Affiliated Companies

CKF

(Headquarters and Nihonmatsu Plant) Address : 5-1 Sumiyoshi, Nihonmatsu City, Fukushima

A r e a:68,400m² Buildings: 13,800m² Major Products:Meters, tank units, a variety of sensors, switches

Ordinance and Agreement	Fukushima Prefectural Ordinance, Nihonmatsu Municipal Ordinance		
Items Regarding Waste	Pogulation value	Results	
Water Regulations	Regulation value	Minimum	Maximum
pН	5.8~8.6	7.1	7.4
SS	70mg/l and less	1.6	6.0
BOD	25mg/l and less	1.0 and less	6.6
N-Hex	5mg/l and less	0.5 and less	0.6
F	-	_	_
Zn	-	_	—
Р	-	_	-
N	-	_	—
Cu	-	_	_
Ni	-	_	—
Fe	-	_	-
COD	-	_	—
E. coli bacteria	3000 and less	C)
Dichloromethane	-	—	—
Total volume of water discharge			14.6(km³)
Drain field	Discharged into a river (subsidiary stream of the Abukuma River)		
BOD average			2.4 (mg/l)
Amount of pollution load (BOD)			0.04(t)
SOx	No S	ulfur content due to	the use of LPG
NOx			0.321(t)
Soot Dust			0.035(t)
CO ₂			3,475(t)

CKF (Tanagura Plant)

Address : 12-1 Gyouninzuka, Ooaza-Uwadai, Tanaguramachi, Higashi-Shirakawa-gun, Fukushima A r e a : 21,682m² Buildings : 4,781m² Major Products:Tank units, rotation sensors

Ordinance and Agreement	Fukushima Prefectural (Ordinance, Tanagura T	own Ordinance
Items Regarding Waste	Result		ults
Water Regulations	Regulation value	Minimum	Maximum
pН	5.8~8.6	7.0	7.3
SS	200mg/l and less	1.0 and less	1.6
BOD	160mg/I and less	1.0 and less	3.8
N-Hex	5mg/l and less	0.5 and less	0.6
F	-	-	-
Zn	-	-	_
Р	-	-	-
N	-	-	_
Cu	-	-	_
Ni	-	-	_
Fe	-	-	_
COD	-	-	_
E. coli bacteria	3000 and less	C)
Dichloromethane	-	-	_
Total volume of water discharge			2.3(km³)
Drain field	Discharged into a rive	er (subsidiary stream of t	he Abukuma River)
BOD average			1.6(mg/l)
Amount of pollution load (BOD)			0.004(t)
SOx			_
NOx			_
Soot Dust			_
CO ₂			531(t)

Domestic Affiliated Companies

CKF (Fukushima Plant)

Address:11-1 Aza-Yamamichi, Arai, Fukushima City, Fukushima

A r e a : 8,512m² Buildings : 4,970m² Major Products:Resin molded parts, sirocco fans, gasoline caps, oil caps

Fukushima Prefectural Ordinance, Fukushima Municipal Ordinance Ordinance and Agreement Items Regarding Waste Water Regulations Results Regulation value Minimum Maximum рΗ 5.8~8.6 7.4 7.8 SS 200mg/l and less 2.2 12.0 BOD 160mg/l and less 10.0 11.0 N-Hex 5mg/l and less 0.5 and less F -_ Zn Ρ _ _ Ν _ _ Cu Ni _ _ Fe _ _ COD E. coli bacteria 3000 and less 0 3 Dichloromethane Total volume of water discharge 0.9(km³) Drain field Discharged into a river (subsidiary stream of the Abukuma River) BOD average 10.5(mg/l) Amount of pollution load (BOD) 0.01(t) SOx _ NOx Soot Dust 1,083(t) CO_2

Tokyo Radiator MFG Co., Ltd.

Address: 2002-1 Endo, Fujisawa City, Kanagawa A r e a: 88,254m²

Ordinance and Agreement	Kanagawa Prefectural Ordinance, Fujisawa Municipal Greening Agreement		
Items Regarding Waste	Pogulation value	Results	
Water Regulations	Regulation value	Minimum	Maximum
pН	5.8~8.6	7.1	7.6
SS	90mg/l and less	1.0 and less	2.4
BOD	60mg/l and less	1.0 and less	9.0
N-Hex	5mg/l and less	0.5 and less	2.7
F	8mg/I and less	0.5	4.5
Zn	2mg/I and less	0.1 an	d less
Р		_	—
N	-	_	—
Cu	-	_	_
Ni	-	_	_
Fe		_	—
COD	60mg/l and less	4.4	17.8
E. coli bacteria	-	_	_
Dichloromethane	-	-	—
Total volume of water discharge			209(km ³)
Drain field	Discharged into a riv	er (subsidiary stream o	of the Isshiki River)
BOD average			3.6(mg/l)
Amount of pollution load (BOD)			0.75(t)
SOx	No Sulfu	ir content due to the	e use of city gas
NOx			0.38(t)
Soot Dust			0(t)
CO ₂			10,755(t)

Domestic Affiliated Companies

CKP (Sano Plant Area 1)

Address : 765 Aza-Ishihara, Takaha-gi-cho, Sano City, Tochigi A r e a: 12,012m² Buildings: 5,670m² Major Products:Resin molded parts, intake, motor fans, liquid tanks, relief valves

Ordinance and Agreement	Tochigi Prefectural Ordi	nance, Sano Municipal Ordinance
Items Regarding Waste Water Regulations	Regulation value	Results
pН	5.0~9.0	7.0
SS	600mg/I and less	1.0 and less
BOD	600mg/l and less	1.7
N-Hex	5mg/l and less	1.0 and less
F	-	-
Zn	-	-
Р	-	_
Ν	_	—
Cu	-	-
Ni	-	_
Fe		_
COD	-	_
E. coli bacteria		_
Dichloromethane		_
Total volume of water discharge		5.6(km³)
Drain field	Discharged into a riv	er (subsidiary stream of the Misugi River)
BOD average		1.7 (mg/l)
Amount of pollution load (BOD)		0.01(t)
SOx		-
NOx		
Soot Dust		_
CO ₂		2,352(t)

CKP (Headquarters, Sano Plant Area 2) Address : 14-4 Sakae-cho, Sano City, Tochigi A r e a:9,010m² Buildings: 5,741m² Major Products: Pressed parts, radiator caps, cup holders, switches, interior assemblies

Ordinance and Agreement	Tochigi Prefectural Ordinance, Sano Municipal Ordinance, Sewage Lav		
Items Regarding Waste Water Regulations	Regulation value	Results	
pН	5.0~9.0	7.4	
SS	600mg/l and less	1.0 and less	
BOD	600mg/l and less	1.0 and less	
N-Hex	5mg/l and less	1.0 and less	
F	-	_	
Zn	-	_	
Р	-	_	
N	-	—	
Cu		_	
Ni	-	_	
Fe		_	
COD	-	—	
E. coli bacteria	-	_	
Dichloromethane		_	
Total volume of water discharge		3.3(km ³)	
Drain field		Sewage	
BOD average		1.0(mg/l)	
Amount of pollution load (BOD)		0.003(t)	
SOx		-	
NOx		_	
Soot Dust		_	
CO ₂		588(t)	

Domestic Affiliated Companies

CKP (Itakura Plant)

Address : 7 Aza-Futoi, Ooaza-Ookura, Itakura-cho, Oura-gun, Gunma A r e a: 16,500m² Buildings: 4,161m² Major Products:Integrated switches for heating air-conditioners, con-trols, electronic circuits

Ordinance and Agreement	Gunma Prefectural Ordinance, Itakura Town Agreement		
Items Regarding Waste Water Regulations	Regulation value	Results	
pH	5.8~8.6	6.4	
SS	15mg/l and less	4.0	
BOD	15mg/l and less	10.0	
N-Hex	3mg/I and less	1.0 and less	
F		_	
Zn	-	—	
Р	-	-	
N	_	_	
Cu			
Ni	_	—	
Fe	-	-	
COD	-	—	
E. coli bacteria	1000 and less	30 and less	
Dichloromethane	_	—	
Total volume of water discharge		5.9(km ³)	
Drain field	Discharged into a river	r (subsidiary stream of the Watarase River)	
BOD average		10 (mg/l)	
Amount of pollution load (BOD)		0.06(t)	
SOx		-	
NOx		_	
Soot Dust		-	
CO ₂		1,428(t)	

CKP (Tochigi Plant)

Address: 144-1 Shimokoyama, Shimono City, Tochigi A r e a: 18,886m² Buildings: 10,497m²

Major Products:Car interior resin parts, instrument panels, consoles, etc

Ordinance and Agreement	Tochigi Prefectural Ordinance, Shimono Municipal Agreement		
Items Regarding Waste	Results		ults
Water Regulations	Regulation value	Minimum	Maximum
pН	5.8~8.6	6.	.9
SS	50mg/l and less	1.6	3.6
BOD	30mg/l and less	1.8	2.7
N-Hex	5mg/l and less	0.5 an	d less
F		-	_
Zn	_	_	_
Р	-	-	—
N	-	_	_
Cu	-	-	—
Ni	-	-	—
Fe	-	—	—
COD	30mg/I and less	2.9	3.4
E. coli bacteria	-	-	_
Dichloromethane	_	—	—
Total volume of water discharge			6.4 (km ³)
Drain field	Dis	scharged into a rive	r (Sugata River)
BOD average			2.3(mg/l)
Amount of pollution load (BOD)			0.01(t)
SOx			-
NOx			-
Soot Dust			-
CO ₂			2,019(t)

Domestic Affiliated Companies

Calsonic Kansei Utsunomiya (CKU)

Address : 11-6 Kiyohara Industrial Park, Utsunomiya City, Tochigi

A r e a : 66,100m² Buildings : 20,864m² Major Products:Compressors for car air-conditioners, parts

Ordinance and Agreement	Tochigi Prefectural Ordi	nance, Utsunomiya Mu	inicipal Agreement
Items Regarding Waste	Pogulation value	Res	ults
Water Regulations	Regulation value	Minimum	Maximum
pН	5.8~8.6	6.8	7.8
SS	40mg/l and less	1.0	6.4
BOD	20mg/l and less	1.0	13.8
N-Hex	5mg/l and less	0.5	0.6
F	-	_	-
Zn	-	_	_
Р	-	_	—
N	-	_	—
Cu	-	-	—
Ni	-	_	_
Fe	-	-	_
COD	20mg/l and less	4.8	15.7
E. coli bacteria	-	_	-
Dichloromethane	-	—	—
Total volume of water discharge			2.8(km³)
Drain field	Via the Kiyohara Indu	strial Park Disposal Pla	nt to the Kinu River
BOD average			6.5(mg/l)
Amount of pollution load (BOD)			0.02(t)
SOx			_
NOx			-
Soot Dust			-
CO ₂			2,296(t)

Calsonic Kansei Iwate (CKI)

Address : 1-27-5 Tatekawame, Wagacho, Kitakami City, Iwate A r e a : 23,410m² Buildings : 9,742m² Major Products:Compressors for car air-conditioners

Ordinance and Agreement	Iwate Prefectural Ordinance, Kitakami Municipal Agreement		
Items Regarding Waste	Population value	Results	
Water Regulations	Regulation value	Minimum	Maximum
pН	5.8~8.6	6.2	7.6
SS	200mg/I and less	2.0	11.0
BOD	160mg/I and less	1.5	28.0
N-Hex	5mg/l and less	0.	5
F	8mg/l and less	0.02	0.12
Zn	2mg/I and less	0.037	0.077
Р	16mg/l and less	3.8	6.1
N	120mg/I and less	45.0	56.0
Cu	3mg/I and less	0.008	0.013
Ni	-	—	—
Fe	10mg/l and less	0.06	0.08
COD	160mg/I and less	6.7	32.0
E. coli bacteria	3000 and less	30	1100
Dichloromethane	-	—	—
Total volume of water discharge			9.8(km³)
Drain field	D	ischarged into a riv	er (Waga River)
BOD average			11.8 (mg/l)
Amount of pollution load (BOD)			0.12(t)
SOx			_
NOx			-
Soot Dust			_
CO ₂			4,115(t)

Domestic Affiliated Companies

Calsonic Kansei Yamagata (CKY)

Address : 190 Chuo Industrial Park, Sagae City, Yamagata A r e a : 10,616m²

Buildings : 5,077m² Major Products:Aluminum die casting, parts processing

Ordinance and Agreement	Yamagata Prefectural C	Ordinance	
Items Regarding Waste	Results		ults
Water Regulations	Regulation value	Minimum	Maximum
pН	5.8~8.6	6.6	7.1
SS	200mg/I and less	2.8	28.8
BOD	160mg/I and less	2.0	11.1
N-Hex	5mg/l and less	0.5 and less	1.3
F	-	—	_
Zn	-	—	_
Р	-	_	_
N	-	—	—
Cu	-	—	_
Ni	-	—	_
Fe	-	—	_
COD	-	—	—
E. coli bacteria	-	—	_
Dichloromethane	-	—	—
Total volume of water discharge			18.8(km³)
Drain field			Sagae river
BOD average			5.7 (mg/l)
Amount of pollution load (BOD)			0.11(t)
SOx			_
NOx			_
Soot Dust			-
CO ₂			4,438(t)

Conclusions

Thank you for reading the "2013 Calsonic Kansei Environmental Report".

We have summarized the Calsonic Kansei Group's efforts for environmental conservation activities in FY 2012 in the "2013 Calsonic Kansei Environmental Report".

We have stressed the importance of "summarizing the environmental conservation activities of Calsonic Kansei as clearly as possible in this report to all readers" and "describing our updated activities and showing that they comply with all relevant guidelines."

We have also stopped issuing this report in written form on paper in order to help conserve the environment. We would like to stay in close communication with you through the Calsonic Kansei Environmental Report, now and in the future.

September 2013

Issued by

Environment & Energy Control Group Calsonic Kansei Corporation 2-1917 Nisshin-cho, Kita-ku, Saitama City, Saitama, 331-8501 Issued in September 2013 (annual publication)

Next publication September 2014

Contact

Inquiries regarding this report Environment & Energy Control Group Calsonic Kansei Corporation TEL: +81-48-660-2363 FAX: +81-48-661-1012

This report is also available on the Website of Calsonic Kansei Corporation http://www.calsonickansei.co.jp/

Calsonic Kansei Corporation

Research and Development Center/Headquarters

2-1917 Nisshin-cho, Kita-ku, Saitama City, Saitama 331-8501, Japan